111111111111111

- Part One of a Serles:

" The RS-232-C Serial Interface-

Telecomputing With the APPLE][:
- Transferring Binary Files ;...

~ Beginner’s Column:

- Anyone For a Little‘Kiss’ Electronics?

page 12

: Build an ‘‘EPRAM’’

- Welcome to the first issue of THE COMPUTER
HACKER, a magazine for those interested in building,
interfacing, programming, and using microprocessor
based devices.

When I first got my microcomputer, I was thrilled
about all the things that I could do with it. I used a
word processor, a spread sheet, and a data base
program for my print shop, and learned to love
working with the computer. But then I wanted to use
the computer to control things in the real world and
needed to use something besides prepared programs. I
learned to program in Basic, and found that I needed
assembly language. I took a course in assembly
language, and found that I needed to learn how to
interface to and control devices.

Up to this point I had been able to find the
information I needed. There is a lot of information on
Basic programming. Not all of it is good, but I could
pick and choose to find what I wanted. There is some
information on assembly language programming. Not
much of it is very useful, but at least I could find
enough to help. When I started searching for down to
earth, hands-on, information on interfacing and control
I hit a brick wall.

I looked at the shelves full of computer books, and
the racks full of computer magazines, and said “With
all this literature, what I need must be here
somewhere.” So I started searching for books and
magazines which had what I needed. I found a few
books which touched lightly on the subject, and an
occasional magazine article which shed some light, but
I couldn't find a periodical with ongoing current
information.

We live in a rather isolated area, and I figured that
what I wanted certainly must be available in “The Big
City.” Whenever I traveled, I asked anyone who had
anything to do with computers for leads to the
information. I got a lot of blank stares because they
didn’t understand what I was talking about, and the
few who understood said “When you find it, let me
know because I need it too.” Finally someone said,
“Why don't you publish a magazine for the Hacker?” I
answered, “What? Another computer magazine? You
gotta be kidding.”

I kept on searching, but what I needed didn't exist.
The magazines had nice four-color pictures of the latest
$10,000 computers, stories on how to buy your first
computer, and reports on the newest elegant, high
cost, peripherals. But they didn't have what I wanted.

The Computer Hacker 1

What is it about my needs that make it so unusual? I
want to know how to program and control Stepper
Motors. Not just buy someone's controller board and
plug it in, but understand exactly what makes them
tick. I want a directory of stepper motor eontroller
chips with applications. I want a directory of Hacker
priced sensors with how-to hands-on bench level
application information. I want to hear from the people
who are making things happen-what they're doing,
what works, what doesn't work, and most important,
WHY.

And Stepper Motors is just an example. I want to
know HOW to set up a Timex 1000 or a microprocessor
as a dedicated device to “sit on a process” so that I
don't have to tie up my main microcomputer for control
or monitoring purposes. This means that I have to
understand various series and parallel interfacing
methods, and how to apply them for data transfer and
control.

Data transfer involves AD and DA converters,
UARTS, and various interface adapter chips. I want to
know how to apply them. Not just some prepared
circuit to follow, but know how to apply them to my
needs.

The initial response to The Computer Hacker has
been very good, so apparently I am not the only one
with these strange needs. We have some very
interesting articles coming in, but we also need
feedback from YOU. This is your magazine, and it will
only be as good as YOU make it by sending articles and
information.]

Editor/Publisher.............co0vivvnnn Art Carlson
Art Director........cooveieiinnnnn Joan Thompson
Technical Editor . Lance Rose

Technical Edstor.coivvvvennnnnnn Phil Wells

The Computer Hacker® is published 12 times
a year. Annual subscription is $24 in the U.S,

$30 in Canada, and $39 in other countries.

Entire contents
Computer Hacker.
Postmaster: Send address changes to: The

Computer Hacker, P.O. Box 1697, Kalispell

MT 59908-1697.

Address all editorial advertising and subscription
inquiries to: The Computer Hacker, P.O. Box
1697, Kalispell, MT 59903-1697.

copyright © 1988 by The

The Computer Hacker

THE RS-232-C SERIAL INTERFACE

by Phil Wells—Technical Editor

INTRODUCTION

M uch myth, misinformation and misap-
plication surrounds the use of the RS-232C
serial communications interface standard in
the microcomputer industry. The standard is
too general, was not written with micros in
mind, and unnecessarily complex for most
micro applications. Designers implement sim-
plified versions of the standard and usually
don’t choose the same path to simplification.
The purpose of this tutorial is to explain
what the RS-232C standard is and is not, to give
examples of real micro-world implementation
of the standard, and to propose a simplified
version for use in Computer Hacker projects.

The RS-232C Standard

The RS-232C standard is a publication of
the Electronic Industries Association (EIA).
The name means ‘‘Recommended Standard”
number 232, revision C. The full title is
“Interface Between Data Terminal Equipment
and Data Communication Equipment Em-
ploying Serial Binary Data Interchange.” The
most recent revision was adopted in 1969. You
can obtain a copy of the standard by writing to
the address given in Table 2.

To discuss the standard, we need to agree
on definitions of some of the terms used in
the standard.

® Serial Binary Data means that the ones
and zeroes (bits) are sent one at a time
—in serial fashion—rather than eight bits
at a time as with a parallel (e.g. Centronics)
interface. This standard says nothing
about data formats or codes. It only
defines a way to send one bit at a time.

© DTE or Data Terminal Equipment is the
hardware that produces or uses the
information being communicated. This
means a host or remote computer or
terminal, a printer, a remotely controlled
device, etc.

© DCE or Data Communication Equipment
is the hardware that conveys the

Part One

information between the pieces of Data

Terminal Equipment. This usually means a

MODEM. When two DTE's (Terminal

Equipments) are connected by an RS-232C

interface, one must play the role of a DCE

or MODEM even if two DTE’s are being
directly connected. This arrangement can
be simulated using a ‘‘Modem eliminator”
described later.

® interchange or Interchange Circult. The
standard uses this term to define each
current path— a signal wire and its
return wire. Simpler than it sounds.

® Interface. Simply the point of connection
between two pieces of equipment.

The standard defines several things:

® Electrical characteristics.

® Mechanical characteristics.

® A functional description of data, timing
and control circuits.

® Standard subsets of the interchange
circuits for specific applications.

One reason the RS-232C standard is ap-
plied in such diverse ways when micros are
connected to printers Is that the entire
document refers to a DTE-DCE-telephone line
DCE-DTE communications link. That is, two
computers talking to each other over telephone
lines, with MODEMS coupling both machines
to the phone lines. The standard defines the
electrical connections between each com-
puter and its MODEM. Many if not most micro
applications of RS-232C are really misap-
plications since no DCE is involved; in these
cases most of the standard makes no sense at
all.

RS-232C Electrical Characteristics

The standard references the equivalent
circult shown in figure 1. It shows a driver side
and a terminator side, connected at an
“interface point.” For the driver, we usually use
an MC1488—or similar—integrated circuit, and
for the receiver side, an MC1489A—or similar—
integrated circuit. The driver generates an
open-circuit voltage, Eqyr. The driver side of

Figure 1—Interchange Circuit.
INYWA

FRURREN
L]

the interface (including cable) has an output
impedance, Rgytand an output capacitance,
Cout. The receiver or terminator side has an
open-circuit voltage, E|N, an input impedance
and capacitance (again including cable)
of Ry and Cyn.

While it may not be obvious, an “inter-
change Circult” is one of the signal, timing or
control wires, while the “Circuit AB, Signal
Ground’” is the one and only return wire for all
three groups of signals. The RS-232C standard
defines an ‘‘unbalanced” circuit; the newer
RS422 standard defines a ‘'balanced” type of
interface, with a separate return wire for each
signal.

The voltages, resistances, capacitances
and unbalanced configuration of this
equivalent circuit determines the electrical
requirements and the limitations of an RS-232C
implementation. For our use, the important
electrical requirements and limitations are:

1.The driver (sending chip) must not be
damaged by an open circuit or by a short
to ground or to any other wire in the
interface cable.

2.The terminator (receiving chip) must be
able to tolerate 25 voits above ground and

25 volts below ground. Driver chips such

as the 1488 are designed to meet these

requirements; normal TTL circuits will
not meet the spec.

3.The open-circuit voltage at the terminator
must not exceed plus or minus two volits.

4.The terminator load impedance must be
between 3,000 and 7,000 ohms.

5.The terminator load impedance must be
non-inductive and the terminator's shunt

capacitance must not exceed 2,500

picotfarads.

6.The driver's open-circuit voltage must be
limited to plus or minus 25 volts.

7.The driver's output impedance is not
directly specified, but must be selected to
limit the short-circuit output current to

T

The Computer Hacker

one-half ampere, and the power-off output
impedance must not be less than
300 ohms.

8.The driver's output impedance shouid be
selected such that the “one’” and ‘‘zero”
levels at the output of the driver are
between 5 and 15 volts in magnitude.

9.A logical “1”, or MARK or OFF condition
exists when the voltage at the interface
point is between -3 and -15 voits.

10.A logical “0”, or SPACE or ON condition
exists when the voltage at the interface
point is between +3 and + 15 volts.
Since the driver must output at least + five
volts and the receiver must detect a ‘0"
at +3 voltsand a‘“1” at — 3 volts, we have
a two volt safety or *noilse” margin
on each side.

11.0n some specific interchange circuits, an
open connection or a power-off condition
must be decoded by the receiving device
as an “oft” or “logic 1" condition. This is
important because it determines what the
software does if the connectors are
unplugged or the power is off at one end.
The effects of the voltages specified above

are summarized in Figure 2. Notice that 25 volts
is the maximum allowable magnitude and that a
legal “1” or "“0” is between 3 and 15 volts
in magnitude.

Max open-circuit
+25Vde pe

invalid Levels

+15Vdc Driver Max Zero

“ON"/Binary 2Zera/Space

+5Vdc o Driver Min Zero
n
+3Vdc Revr Min Zero
Transition Region
ZeroVde —t~ —— —— — — —
Invalid Levels
-3Vdc
Noise Margin Rcvr Min One
~-5Vdc
Driver Min One
“OFF"/Binary One/Mark
-15Vdc
Driver Max One
Invalid Levels

-25Vde

Max Open-Circuit

Figure 2—RS-232-C Voltage Levels.

4

The Computer Hacker

The transition region, between x3 volts,
has some additional requirements: a signal
must go cleanly through this region, without
stopping or changing directions; a Control cir-
cult signal must completely pass through this
reglon within one millisecond; a Data or Timing
signal must pass through in the lesser of one
millisecond or four per cent of the nominal
duration of a signal element on that inter-
change circuit, and the maximum instan-
taneous rate of change of voltage must not ex-
ceed 30 volts per microsecond.

Hacker's View of the Electrical Requirements
If you want to build a RS-232C compatible
interface, the electrical requirements dictate at
least the following:
® A 5 volt power supply doesn’t cut it and
standard TTL drivers and receivers can't
be used. The voltages required are
“bipolar”; they go both sides of ground.
You must be able to swing the voltages
at least x5 volts from ground. Maximum
open-circuit voltage allowed is 25 volts,
and your drivers must be able to stand
a short to ground or to another output.
Maximum signal voltage is 15, each
side of ground.
® Driver and receiver chips usually invert
the signal since the standard defines a
logical “1” as a negative voltage while in
most popular microprocessor systems a
logical “1” is the more positive of the two
allowable states.
® The voltage and impedance requirements,
as well as the A.C. characteristics, can
most easily and cheaply be met using + 12
volt power suppiies—which don’t have to
be regulated if they are well filtered, and
by using the inexpensive and easily
obtained MC1488 line driver and MC1483A
line recelver iC’s.
® The capacitance and (to a lesser extent)
the resistance requirements mean that the
cable length is restricted—although
low-capacitance cables can extend the
distance over which the interface can be
used. The standard recommends that the
combined lengths of cables be restricted
to 100 feet (50 feet for each of the two
“extension”” cables on each side of the
interface point). Hackers use longer
cables at your own risk.

“SPACE" = 4+ 3to + 15 volts.

. “0" - ILONH
= “MARK" = -~ 3to — 15 volts.

®“1"="0FF" =
Mechanical Characteristics
The standard’s mechanical specifications
are vague and brief. Here are my inter-
pretations. Everything is given in terms of a
DTE connected to a DCE; again, in practice, we
cannot connect two computers or a computer
and a printer without having one of them
simulate a MODEM. '
1.The interface is not “hard-wired.”. There
must be a “pluggable connector signal
Interface point between the two
equipments.”
2.The DCE (MODEM,) has a female connector,
which must be “mounted in a fixed
position near the DTE.” This connector
can be mounted on the end of a cable
from the DCE; it doesn't have to be
attached directly to the DCE.
3.The standard seems to require that the
DTE provide a panel-mounted connector
(any sex) and an “‘extension cable” ending
in a male connector.
4.The ‘“extension” cables on either DTE
or DCE (or both) are recommended to be
shorter than 50 feet, although longer
cables are permitted provided the total
load capacitance including terminator
“does not exceed 2500 picofarads.”
5.1f there Is a separate unit between the DCE
and DTE to provide additional functions,
there must be a female connector on the
side connecting with the DTE and a male
connector on the side connecting
to the DCE.
6.The standard defines 25 pins, three of
which are unassigned and two of which
are reserved for testing. That leaves 20
pins actually defined for interchange
circuits.

Hackers View of the Mechanical Requirements.
It you want to build devices using the RS-
232C interface, the mechanical requirements
dictate at least the foliowing:
® The DTE must provide a female connector
on the end of an extension cable.
® The DCE must provide a female connector
mounted in a fixed position.
® in practice, these two requirements are
met by putting female connectors on the

The Computer Hacker 6

Pin No. Circuit Name Description Type Direction
_ RS-232-C Mnemonic
1 AA GND Protective Ground Ground X
7 AB GND Signal Ground X
— 2 BA TXD Transmitted Data Data From DTE
3 BB RXD Received Data To DTE
14 SBA (S)TD Secondary Transmitted Data From DTE
. 16 SBB (S)RD Secondary Received Data To DTE
4 CA RTS Request to Send Control From DTE
5 CB CT8 Clear to Send To DTE
6 CC DSR Data Set Ready ToDTE
- 8 CF 0CD Data Carrier Detected ToDTE
20 cD DTR Data Terminal Ready From DTE
21 CG SQ Signal Quality Dector To DTE
— 22 CE RI Ring Indicator To DTE
23 CH Data Signal Rate Selector (DTE) From DTE
23 Cl Data Signal Rate Selector (DCE) To DTE
_ 12 SCF (S)DCD Secondary Data Carrier Det. To DTE
13 SCB (S)CTS Secondary Clear To Send To DTE
19 SCA (S)RTS Secondary Request to Send From DTE
B 15 DB (TC) Trans. Signal Element Timing (DCE) Timing To DTE
17 DD RC Rec. Signal Element Timing (DCE) To DTE
24 DA (TC) Trans. Signal Element Timing (DTE) From DTE
9 Reserved for Data Set Testing
o 10 Reserved for Data Set Testing
1B Unassigned
18 Unassigned
- 25 Unassigned

Figure 3—RS-232-C Circuit Groups

rear panels of both the DCE and the DTE, 1BM do this).
using a cable with male connectors on
- both ends to connect the two Definitions of Circuit Functions
' “equipments.” The standard defines four groups of cir-
® A 25.pin connector is specified, but no cuits, as listed in Figure 3:
- details are given about its size and shape. Ground
‘ In practice, the DB-25S (female) and Data
DB-25P (male) connectors are the Control
— de facto standards. Timing

® Since all but three of the 25 pins are
explicitly defined, it is asking for trouble Ground Circuits
— to add functions not included in the Two ground wires are specified. Pin seven,
standard. But if you do, use the three the “‘signal ground/common return,” is always
unassigned pins. Some dumb practices used because it is the single return path for all
I've run into that cause problems are the currents in the interchange circuits.

(1) putting both a serial and a paraliel Pin 1: Protective ground.
interface on a single DB-25 connector, Pin 7. Frame ground.
_ (2) adding a current loop intertace to an Pin one, the “protective ground,” is op-

RS-232C serial DB-25 connector and tional and is often omitted, but shouldn’t be.
(3) using a DB-25 connector for a This wire is designed to protect operators by
“Centronics compatible” interface (the ensuring that the chassis or frames of the DCE
newest micros from both Apple and and DTE are both at the same electrical poten-

The Computer Hacker

tial. A shock hazard can exist if this wire is not
used. Pin one of the connectors on each piece
of gear should be *‘electrically bonded to the
machine or equipment frame.”

Carefully designed analog equipment
avolds internal “ground loops™ by maintaining
a “signal common” within the chassis, connec-
ted to the chassis at one and only one point. In
this case, Pin 1 connects to the frame and Pin 7
connects to the signal common (often calied
“logic ground” or “logic common” on digital
equipment.)

Data

Four data leads are defined; two for tran-
smit and two for receive.

The standard defines a “primary” or ‘“for-
ward” channel and a ‘‘secondary” or “backwar-
ds” channel, so in a sense there are two com-
plete interfaces. In micro systems we rarely see
any use of the secondary or backwards circuits.

Pin 2:Transmitted Data (to the MODEM)

Pin 3: Received Data (from the MODEM)
For the primary channel, the DTE transmits on
pin two and receives on pin three. This means
that the DCE transmits on pin three and
receives on pin two. For the simplest interface,
all that is needed is three wires; on pins two,
three and seven. Note that despite what is often
done, pin one should not be the ground wire
selected for a “‘three-wire serial interface,” sin-
ce it is optional while pin seven (signal ground)
is mandatory.

To connect two DTE's with a ‘‘standard”
male-to-male cable does not work, since they
both transmit on pin two—neither would
receive any data. This is solved with a “MODEM
eliminator,” a short cable with a female con-
nector on one end and a male connector on the
other end. Pin two on each end is connected to
pin three on the other end (see Figure 4).

The transmitted data circuit must meet
several other requirements. It must put out a
“marking’ voltage (- 5 to — 15 volts) when not
transmitting data and between characters or
words. Also, it must not transmit unless an
“on’” voltage (+5 to + 15 volts) is present on
pins 4,5, 6 and 20, when these pins are connec-
ted as specified.

The secondary channel DTE transmits on
pin 14 and receives on pin 16.

Control

The control circuits are supposed to en-
sure that neither end tries to transmit data
unless the other is ready to listen. Since the
standard is concerned with a MODEM
telephone connection, several of the control
circuits signal the DTE whether or not the
telephone connection to the remote MODEM
has been properly made. These lines serve no
purpose when a terminal or printer is connected
directly to a computer, so they are very often
omitted.

More commonly, at least with micros, the
control leads perform some kind of simplified
“handshaking.” For all but the simplest of ap-
plications, we need some way for each device
to tell the other to stop sending or to not start
sending. The most common case is where a
computer is driving a printer which can't
physically print as fast as the computer sends
data. When the printer's input buffer fills, it
must be able to signal the computer to suspend
transmission until the printing catches up.
When the printer is ready for more data, it must
be able to signal the computer to resume tran-
smission. This is a simple one-way handshake.

A two-way handshake Is needed if both en-
ds can transmit. Each must be sure the other
end is ready to listen. For example, say a ter-
minal is connected to a computer, and the
computer plays the MODEM role. The computer
needs to check that the terminal is ready to
receive before it sends a biock of data and the
terminal needs to be sure the computer is ready
to listen before it sends keyboard data to the
computer. There are several methods of im-
plementing a two-way handshake by sending
special characters on the transmit data lines;
the control lines provide a hardware handshake
scheme. For maximum reliability, both should
be used.

™D 2 : : 2 ™D
RXD 3 3 RXD

Sig. Gnd 7 7 Sig. Gnd.
DB-25P DB-258
Male Female

Figure 4— 3-Wire Modem-Eliminator.

There are nine control leads defined
for the primary channei:

Pin 4: Request to send (from DTE to

the MODEM).
The standard spends a full page enumerating
all the things a MODEM must do in response to
an ON or OFF condition (or a transition). Sim-
ply, the DTE telis the DCE that it is ready to
transmit data by setting pin 4 ON
(positive voitage).

Pin 5: Clear to send (from the MODEM

to the DTE).
The MODEM sets this ON to tell the DTE that
Transmitted Data (pin2) will be passed on to the
telephone line. In other words, ‘‘Go ahead and
send, | am listening and am ready to relay your
message.” This line is set ON only after Data
Set Ready and Request to Send have both been
set ON.

Pin 6: Data Set Ready

(from the MODEM to DTE).
The MODEM sets this ON to tell the DTE that it
(the MODEM only—not necessarily the com-
plete channel to the recelving end) is in a
“Ready to listen” condition. This means
(1) it is connected to a communication channel,
(2) it is not in test, voice, or dial mode, and
where these apply, (3) has completed any timing
functions related to establishing the call, and
(4) has completed transmission of its answering
tone. Most of these conditions don’t apply in a
direct computer-to-printer interface.

Pin 20: Data Terminal Ready

(From DTE to MODEM).
Strictly speaking, this line switches the

MODEM to and from the communication line.

More loosely, the ON condition of DTR in-
dicates that the DTE is ready to send or receive
data.
Pin 8: Received Line Signal Detect (from
MODEM to DTE). Commonly called DCD
for Date Carrier Detect.
The MODEM sets this line ON when it is
receiving a signail on the telephone line which
meets Its ‘‘suitability criteria”; that Is, the
signal is of high enough quality that the
MODEM (which stands for MOdulater/

DEModulator) can actually demodulate it. An
OFF (negative) level indicates that the MODEM
is not receiving a signai or that the received
signal is of too low quality to ensure good
reception.

The Computer Hacker

Pin 21: Signal Quality Detector

(from MODEM to DTE)
The MODEM sets this line ON whenever “‘there
is no reason to believe an error has occurred.”
An OFF says an error probably has occurred,
due for example to a high noise level on the
telephone line.

Pin 23: Data Signal Rate Selector (from

DTE or from DCE).
Selects one of two data signalling rates or
ranges of rates; an ON level selects the
higher rate.

The secondary channel is allotted three
handshake (control) lines:

Pin 19: Secondary Request to Send.

Pin 13: Secondary Clear to Send.

Pin 12: Secondary Received Line

Signal Detector.
The uses of these lines are analagous to the
similar primary channel lines.

Timing Circuits
Pin 24: Transmitter Signal Element Timing

(from DTE to MODEM).

This is a clock signal. The DTE effects an ON to
OFF transition on this line to indicate the cen-
ter of each signal element (usually means each
bit cell) on the Transmitted Data line. This can
be implemented to reduce errors, but is not of-
ten used.

Pin 15: Transmitter Signal Element Timing

(from MODEM to DTE).

Clock signal from the MODEM to the DTE. If the
MODEM implements this signal, the DTE is
required to adjust its sending timing such that
the transitions (not the center) of the signal
elements occur nominally at the same time as
the OFF to ON transition of this clock. In other
words, where these two timing signals are
used, the MODEM controls the DTE’s transmit-
ted data transitions, and the DTE tells the
MODEM where the element centers are.

Pin 17: Receiver Signal Element Timing

(from MODEM to DTE).

A timing element similar to pin 24, but from the
MODEM to tell the DTE where to expect the
center of the signal elements transmitted by
the MODEM to the DTE.

There are no secondary channel timing
signals. Where a secondary channe! is im-
plemented, timing is controlled by the primary
channel.

7

The Computer Hacker

Reserved Circuits
Pins 9 and 10 are reserved for
“Data Set Testing.”

Unassigned Circuits

Pins 11, 18 and 25 are ‘“‘unassigned’’; these

are for circuits not specified in the

standard, *‘made by mutual agreement.”
An example is in the Semiconductor Equipment
Communication Standard (SECS) published by
the Semiconductor Equipment and Materials
Institute, Inc. (SEMI), which uses pins 18 and 25
to supply plus and minus 15 volts power to an
isolated interface. While we're on the subject,
the SECS overcomes one of the problems with
the RS-232C standard interface—isolating the
two equipments. You should be conscious of
the fact that when you connect two equipments
with an RS-232C cable you are connecting their
signal and/or frame grounds. This has caused
sparks to fly on more than one installation
where poor power wiring or large separations
resulted in a difference of chassis potential
between the two ends.

Table 1: What the RS-232C standard does not specity.

1) The ASCIl character code set. ANSI X3.4
(American National Standard Code for Information In-
terchange) specifies this.

2.) How to control message transfer using ASCIi.
ANSI X3.28 and X3.57 cover this.

3.) Communication at data rates higher than 20,000
bits per second.

4.) The DB-25 connector. The standard specities
only that the connectors used shail have 25 pins. No
physical dimensions (size or shape) are given.

5.) Limitation to asynchronous communications.
The standard references RS-334, “Signal Quality at
Interface Between Data Processing Terminal Equip-
ment and Synchronous Data Communication Equip-
ment for Serial Data Transmission’ for use with syn-
chronous systems.

6.) The *current loop" serial interface. There
should be no such thing as a *‘RS-232 Current Loop,”
but at least one manufacturer call its interface this.
The current loop is an unofficial standard design
dating from early teletype days.

Table 2: Where to get the standards.

1.) Electronics Industries Assoclation standards
such as the RS-232-C ($5.10 plus $2.50 for RS-232-C
application notes):

{EC Standards
2001 “I" Street, NW
Washington, DC 20006

2.) American National Standards institute standar-
ds such as the ASCII standard (American Standard
Code for Information Interchange, X3.4-1977):

ANSI Standards
1430 Broadway
New York, NY 10018

3.) IEEE Standards such as the IEEE-488:

|EEE Standards
345 E. 47th Street
New York, NY 10017

4)) Consultative Committee for International
Telephone and Telegraph Standards such as the X.25
(international standards):

CCITT Standards
International Telecom
Places de Nations
1211 Geneva 20
Switzerland
5.) International Standards Organization (ISO):
Order SO standards from the ANSI
Standards address above.
6.) International Electro-Technical Commission{lEC):
|EC Standards
1 Rue de Varembe
1211 Geneva 20
Switzerland

So far we've taken a pretty close look at
what the RS-232C standard defines as the elec-
trical and mechanical parts of a serial data in-
terchange scheme. Next month we'll cover the
standard’s ‘‘standard configurations,” some
real-(micro)-world configurations, and we'll
present some recommendations for
“hacker’” standards. a

To Be Continued

.
FEEDBACK NEEDED

This magazine is published for you, and in order
to serve you we need your feedback. Send us your
questions on the RS-232 interface. We'll answer
those we can, and publish the others to get help
from our readers. Also tell us about your
experiences (both the good ones and the bad ones),
the problems you've had, and how you've solved
them.

The Computer Hacker 9

TELECOMPUTING WITH THE APPLE][:
TRANSFERRING BINARY FILES

BY Marvin L. De Jong

INTRODUCTION

The programs we will describe allow you to communicate a
binary disk file (B file) from one Apple II to another over
telephone lines. The equipment required is either a Hayes
Micromodem II or a California Computer Systems 7710 Asyn-
chronus Serial Interface connected to an acoustic-coupled
modem such as a Novation Cat. We will also show how text
files (T files) can be converted to B files, so that the programs
will also communicate T files. Since it is easy to convert Ap-
plesoft files (A files) to T files, you can also communicate Ap-
plesoft programs. All of our work was done with a 48K Apple
I1. The programs must be modified slightly for systems whose
memory capacity is different.

HARDWARE

Both the Micromodem II and the CCS 7710 boards use a
6850 ACIA (Asynchronous Communications Interface
Adapter). Consequently, a program written for one board will
usually work for the other, with little or no modification. The
6850 ACIA performs the parallelto -serial and the
serial-to-parallel conversions that are required for telephone
communications. The asynchronous serial protocol is con-
trolled by the software. The protocol assumed by our sof-
tware is an eight bit word, no parity, one stop bit, and a bit
rate of 300 bits/sec. The 6850 is described in detail in De
Jong's Apple II Applications (Howard W. Sams & Co., Inc.,
Indianapolis, IN 46268). If you want to modify the programs
for other protocols, consult that reference and the operating
manuals that come with the peripheral you are using.

If you are using a Micromodem II then the only connection
you need to make is to insert the plug from the Micromodem
I1 into the telephone jack. If you are using a CCS 7710 board,
then you will need a modem. For our tests we used a acoustic-
coupled Novation Cat. The connections between the CCS 7710
board and the Cat are described in Table 1. Both devices use
female DB 25 connectors, 8o you will need two DB 25 male
connectors and a five-conductor cable. A row in Table 1 tells
you the pins to be connected.

Table 1

CCS 7710 Board Pin Name Novation Cat
Pin Number Pin Number

3 TXD 2

2 RXD 3

4 CTS 5

20 DSR 6

7 GND 7

COMMUNICATIONS PROGRAMS

The programs to communicate a binary file from one
Apple II to another are given in Listings 1 and 2. Both of the
communicating parties have these programs loaded and run-
ning when they communicate. Listing 1 contains the BASIC
routines that make use of the machine-language routines in
Listing 2. In this section we will describe how these
programs work.

Refer first to Listing 1. First of all, HIMEM is moved
down to provide undisturbed space for the machine language
routines. An initilization sequence, starting at line 450 is per-
formed next. These lines are quite easy to understand, and
the initilization sequence concludes with the machine
language routines being loaded from the disk. Lines 500 to
555 are specifically used by the Micromodem II, not the CCS
7710 board. Their execution stores the correct modem control
word in the modem control register, starting the modem
transmitter and lifting the telephone off the hook.

Line 600 in Listing 1 calls a machine language routine that
resets the 6850 ACIA, sets up the protocol defined above, and
waits for carrier to be detected. Line 610 calls a machine
language terminal routine. In this routine the two parties can
use their keyboards and video monitors to communicate with
each other. The person who wishes to send the binary file
exits the terminal routine by typing 8 “CTRL S” character.

" At this point both programs exit the terminal routine and go

back to the BASIC program at line 620.

If a “CTRL S” character was sent, then memory location 10
will contain a zero and the program will branch to lines 100 to
200. If a “CTRL 8" character was received, then memory
location 10 will not be zero, and the program will branch to
lines 300 to 410. Now each party is executing a different
routine. The computer sending the binary file will be
executing lines 100 to 200, while the computer receiving the
binary file will be executing lines 300 to 410.

Lines 100 to 200 accomplish the following tasks. The file
name is input from the keyboard, the file is loaded into
memory, and its address and length are obtained from the
memory locations where the Apple II DOS stored these
parameters. These parameters are now stored in new
locations in page zero of memory. The program then calls a
machine language program that sends the binary file.

Here is how the file is sent. First the starting address of
the binary file is sent in two bytes. Refer to line 147 in the
machine language routine, Listing 2. Next, the length of the
file is sent in two bytes. The length of the file is added to the
starting address to get the ending address. This is used by the

10 The Computer Hacker

sending routine to know when to quit. Each byte is now read
from memory and sent to the serial output subroutine. Refer
tolines 158 to 183 in Listing 2. ‘

After each byte is sent it is added to a checksum. The
checksum adds all the bytes in one page of memory as they
are sent. After sending one page of memory, the receiving
routine sends back its two checksum bytes, and the transmit-
ting program compares them with its own checksum. If there
is disagreement, a flag byte is set, and the parties are notified
of a checksum error. If less than one page of binary data is
sent, then the checksum is completed when the last byte is
sent.

~ The checksums are accumulated in memory locations that
correspond to the text screen. While the data is being sent
you can watch the two screen locations change. Obviously, if
the two screen locations do not change after a few minutes
then something tragic has happened, someone has hung up or
lighting has struck the telephone system, and you should
return to the terminal mode, or lift up the receiver and com-
municate normally. On the other hand, if you are sending a
HIRES graphics page, perhaps a ground hog day greeting
card you have drawn, then there might be numerous bytes
that contain zero, so don't be too quick on the draw if the
checksum locations do not appear to be changing rapidly.
When both parties observe a checksum error you will
automatically be returned to the terminal mode.

Let us assume the file is successfully transmitted. Then the
BASIC program continues at line 180. It waits until the
receiving party has saved the binary file on disk, and then
control returns to the terminal mode.

On the receiving end, lines 300 to 410 are executed after a
“CTRL S” is received. The machine language receiving
routine starts on one 94 in Listing 2. The starting address and
the length of the file are received and stored, then the data is
stored in the same memory locations as it is found in the com-
puter of the transmitting party. When all the checksum in-
formation has been returned, the complete file is in memory
and control returns to the BASIC program at line 330. Now
the user is obligated to input a file name and the Apple I1 DOS
saves the file. The word “READY" is sent to the other com-
puter, and then both parties are back in the terminal mode.

The extensive remarks and comments should make the
programs understandable. We have not included any scheme
to interrupt the programs if the carrier is lost. On the
Micromodem II this requires a solder connection, and of cour-
se it requires an interrupt routine to handle the various
situations that can produce an interrupt on the 6850 ACIA. If
in fact the carrier is lost, both programs will get hung. This
will be obvious in the terminal mode if you no longer get any
information. If it happens, lift off the telephone handset and
talk. When the file is being communicated, a loss of carrier, or
another problem perhaps, is detected by “dead” checksum
characters on the screen of the video monitor. Wait a bit to
make sure the system really is down and not just transmit-
ting zeros, then lift up the telephone and check for the carrier.
Serial communications usually are very reliable, so you
should not have to deal with these situations very often.

One last detail. How do you get started? If you are going to

transmit a file, make the telephone call and exchange
greetings. Then both parties RUN their programs. Enter the
correct slot number. If you are calling, select the originate
mode: if you are answering, select the answer mode. When
the carrier is detected you can begin communicating in the
terminal mode. With an acoustic coupled modem this means
placing the handset in the muffs. With the Micromodem II this
means hanging up the telephone and letting the Micromodem
take over since it also has the handset off the hook.

ADDITIONAL PROGRAMS

We include two other utility programs to make the
previous programs more useful. The first utility program
takes a text file and converts it to a binary file, in which form
it can be used by the programs in Listings 1 and 2. This
program is given in Listing 3. Assume that you have a text
file on your disk. The program asks you to input the file name.
Then it GETs the elements in the file, converts them to
ASCII, and stores them in memory. Once in memory they are
BSAVEdJ using the file name prefixed with a “B"”. The file can
now be sent using the communications programs in Listings 1
and 2.

The second utility program takes a binary file made by the
program in Listing 3 and converts it back to a text file. It also
prints the text on the screen. In other words, once a text file
is communicated as a binary file, you will need a technique to
change it back to its original form. The program in Listing 4
does just that. It BLOADs the file, then takes each ASCII
code and saves it in a text file whose name is the same as the
binary file but prefixed by a “T".

Suppose you have a text file named LETTER that you wish
to send by telephone to another party. The easiest way is to
purchase a 20 cent stamp and mail it. A faster more elegant
and expensive way to send the letter is to convert it to a
binary file using the program in Listing 4. It now bears the
name BLETTER. You send it over the telephone using the
programs in Listings 1 and 2. Suppose the receiving party
gives it the same name, BLETTER, and it stored on that disk
with that file name. The receiving party uses the program in
Listing 4 to convert it to a text file bearing the name
TBLETTER. Now a wordprocessor or another utility can be
used to convert the text file into print.

The Apple II DOS manual illustrates how an Applesoft
program can be converted to a text file. The program in
Listing 3 converts it to a binary file, and finally, after it has
been transmitted over the telephone system, the program in
Listing 4 is used to convert it back to a text file. Then the
EXEC command will load it into your machine in a form that
you can RUN it.

I hope you enjoy working with and improving these
programs. Bells and whisties include driving all of the
programs from a menu, using program input to set the
protocol, and, in the case of a direct-connect modem, adding a
dialing routine. Several other communications programs are
given in the reference mentioned early in the article. Why buy
an expensive communications package when you can hack one
out yourself?

- The Computer Hacker 11

LISTING 1 9454:A9 01 S6 MOLD LDA #$01 SMAKE A MASK.
9456139 86 CO 57 AND CR,Y $RECEIVER FULL?
haat ngWFg :; o :g BEQ HOLD $NO, WAIT FOR IT TO FILL.
TVE BiB c LDA DATA,Y READ THE ACIA.
15 REM MICROMODEM II OR CCS 7710 BINARY FILE SEND/RECE ::25'24 i S re iyt JREAD THE A
160 61 RTS
20 HIMEM:37887 1 GOTO 450 ::6{' ;- o SERIAL Bt NE
. . 611AS 4 63 LDA $45 JUSED TO SEND FROM BASIC.
. itl)g ;:;N; Fit:l;r THE FILE NAME. 9463184 47 64 SEROUT STY $47 ISAVE Y.
120 PRINT D$; "BLOAD®)FILES 94651A4 FF 65 LDY $FF IGET SLOT INDEX.
125 REM NEXT POKES AND PEEKS ASSUME 48K APPLE 1I. 9467148 66 PHA $SAVE CHARACTER ON THE STACK.
130 POKE 249,PEEK (43634) 1 POKE 250, PEEK (43635) 94681A9 02 67 LOAF LDA #02 JMAKE A MASK.
" 135 REM MOVE ADDRESS OF BINARY FILE TO PAGE ZERO LOCATIONS. 946A139 86 CO 68 AND CR,Y STRANSMITTER EMPTY?
140 POKE 251,PEEK (43616) 1 PORE 252, PEEK (43617) 946D1FO0 F9 69 BEQ LOAF INO, WAIT UNTIL IT IS.
145 REM MOVE LENGTH OF BINARY FILE TO PAGE ZERO LOCATIONS. 946F 168 70 PLA $YES, THEN GET CHARACTER
— 150 CALL 38130 1 REM CALL ROUTINE TO TRANSMIT B-FILE. 9470199 87 CO 71 STA DATA,Y IAND SEND IT OUT.
160 IF PEEK (10) = O THEN 180 9473104 47 72 LDY $47 IFETCH Y BACK.
170 PRINT °CHECKSUM ERROR. BACK TO TERMINAL MODE." 1 GOTO 610 9475160 73 RTS
180 PRINT *FILE TRANSMITTED SUCCESSFULLY."
190 PRINT *PLEASE WAIT A MOMENT FOR HOUSEKEEPING CHORES® %;:: .7,: :ggm :gg :;2 1HOLDS ADDRESS OF BINARY FILE.
. TERMINAL.® 1 GO TO 610
. 200 PRINT *TO BE COMPLETED AT THE OTHER gg;?:' ;;’ WL? :ou ::B JHOLDS OF BINARY PILE.
— 0 1 CALL 38020 ' LNGTH QU c
338 lx?xgsé:'(m) =0 '?11924 330 OOFD1 79 ENDLO EQU $FD SLAST ADDRESS IN BINARY FILE.
320 PRINT "CHECKSUM ERROR. BACK TO TERMINAL MODE.® 3 GOTO 610 OOFE: 80 ENDHI EQU $FE
330 PRINT °FILE IS NOW IN MEMORY.® 0536+ 81 SUMLO EQU $536 SCHECKSUM STORAGE.
340 PRINT *INPUT A NAME FOF THE FILE.® 0535+ 82 SUMHI EQU 3535
350 INPUT FILE$
360 LGTH = PEEK(251) + 256*PEEK(252) e 24 JADDITION ROUTINE.
— 370 ADDR = PEEK(249) + 256%PEEK(250) - LGTH ¢ 85 App ac
380 PRINT D$;*BSAVE® ;FILES)",A*;ADDR;*,L*;LGTH ::-7,;'2: E9 'g LDA ADDRLO jADD LENGTH TO ADDRESS
390 FOR I = 1 TO 51 READ A$ $POKE 69, ASC(A$) 1 CALL 37985 o475.85 ;g 4 ADC LNGTLO 1TO FIND ENDING ADDRESS.
400 NEXT I ¢ DATA R,E,A,D,Y s+ RESTORE i :g g: 3%:
. -
410 PRINT "YOU ARE BACK IN THE TERMINAL MODE.® 1 GOTO 610 oarries I 44 o R
9481185 FE 91 STA ENDHI
445 REM INITILIZATION SEQUENCE
— 450 CLEAR 1 D$ = CHR$(4) 1 HOME 9483160 92 RTS
7 NT "IN FACE. "
40 Tupur STUPOKE 255, Jus o O T SN TNTEREACE 5464120 50 54 o }’-Rmmzm.:rgusmx INE-
. . ' N $GET LOW BYTE OF ADDRESS
450 PRINT D$)*"BLOAD BTERMINAL ROUTINES 1.0.0BJO ::g;'gg §3 . gg I ane lgET Low
500 MODEM = -~ 16251 + 16 * §] JSR SERIN IGET HIGH BYTE OF ADDRESS.
510 PRINT ®ANSWER (A) OR ORIGINATE (0)?*® 948C185 FA 98 STA ADDRHI 3STORE IT.
- 5§20 INPUT A$ 948E120 50 94 99 JSR SERIN 3GET LOW BYTE OF LENGTH.
$30 IF A$="A" THEN POKE MODEM,139 : GO TO 600 9491185 FB 100 STA INGTLO STORE IT.
540 IF A$="0" THEN POKE MODEM,143 : GO TO 600 9493120 50 94 101 JSR SERIN $GET HIGH BYTE OF LENGTH.
250 GO TO 510 9496385 FC 102 STA LNGTHI)STORE 1IT.
555 REM OMIT LINES 500 - S55 FOR CCS 7710 SERIAL 1/0 BOARD. 9496120 76 94 103 JSR ADD $ADD TO FIND ENDING ADDRESS.
949B1A0 00 104 LDY #uU)PREPARE TO GET BINARY
- 600 CALL 37888 3+ REM CALL INITIALIZATION ROUTINE, 949D:A2 00 105 LDX #00 IFILE AND STORE IT.
610 CALL 37911 1 REM CALL TERMINAL ROUTINE. 949F16E 36 05 106 BACK STX SUMLO SCLEAR CHECKSUM LOCATIONS.
620 HOME t IF PEEK (10) = O THEN 100 94A238E 35 05 107 STX SUMHI
630 GO TO 300 94A5:20 50 94 108 MORE JSR SERIN JGET A FILE BYTE.
94A8:15] F9 109 STA (ADDRLO),Y jSTORE IT.
94AA: 18 110 cLe JPUT THE BYTE IN
LISTING 2 94AB16D 36 05 111 ADC SUMLO)THE CHECKSUM.
. 94AE:8D 36 05 112 STA SUMLO
94B1:A9 00 13 LDA %00
SOURCE FILE: BTERMINAL ROUTINES 1.0 94B3:6D 35 05 114 ADC SUMHI
00001 1)THIS PROGRAM ASSUMES THE HAYES MICROMODEM OR THE 94B6:18D 35 05 115 STA SUMHI
00003 2 »CCS 7710 CARD IS IN A CARP SLOT. 94B91E6 F9 116 INC ADDRLO jUPDATE THE LOCATION.
€000+ 3 KYBD EQU $C000 JAPPLE KEYBOARD ADDRESS 94BB1DO 02 117 BNE ARND
€010 4 STRE EQU $C010 JKEYBOARD STROBE CLEAR. 94BDIE6 FA 118 INC ADDRHI
—_— ., CO861 5 CR EQU $C086 16850 ACIA CONTROL REGISTER. 94BF3AS F9 119 ARND LDA ADDRLO sCHECK TO SEE IF THE
C0861 6 STATUS EQU $C086 16850 ACIA STATUS REGISTER. 94Cl:1C5 FD 120 CMP ENDLO PFILE 1S COMPLETE.
C0871 7 DATA EQU $C087 16850 ACIA DATA REGISTER. 94C3:DC OA 121 BNE HERE
FDFO1 B COUTI EQU $FDFO JMONITOR OUTPUT ROUTINE. 94C5:A5 FA 122 LDA ADDRHI
000As 9 FLAG EQU $0A JFLAG LOCATION. 94C7:1C5 FE 123 CMP ENDHI
----- NEXT OBJECT FILE NAME IS BTERMINAL ROUTINES 1.0.0BJO 94C91D0C 04 124 BNE HERE
94001 10 ORG $9400 94CB120 D8 94 125 JSR CHKSUM
— S4CE160 126 out RTS
94001 12 JINITIALIZATION ROUTINE. 94CF 1E8 127 HERE INX JOUTPUT ONE CHECKSUM FOR
94001A4 FF 13 LDY S$FF $GET PERIPHERAL SLOT INDEX. 94D01D0 D3 128 BNE MORE JEVERY PAGE OF DATA.
94021A9 03 14 LDA #$03 JRESET 6850 ACIA. 94D2320 D8 94 129 JSR CHXSUM
9404199 86 CO 15 STA CR,Y 9405118 130 cLe JFORCED BRANCH.
94071A9 15 16 LDA #315 $SET PROTOCOL: 8 BITS, 94D6190 C7 131 BCC BACK
9409199 86 CO 17 STA CR,Y JNO PARITY, ONE STOP BIT.
— 940C:B9 B7 CO 18 WAIT LDA DATA,Y JREAD AND DISCARD DATA. 94D8: 133 ;CHECKSUM ROUTINE.
940F1B9 86 CO 19 LDA STATUS,Y JARE CTS AND DCD SIGNALS 94DB:AD 36 OS5 134 CHKSUM LDA SUMLO }SEND LOW BYTE OF CHECKSUM.
9412129 OC 20 AND #30C JPRESENT? 94DB120 63 94 135 JSR SEROUT
9414100 F6 21 BNE WAIT INO, WAIT HERE. 94DEIAD 35 05 136 LDA SUMHI)SEND HIGH BYTE OF CHECKSUM.
9416160 22 RTS JRETURN FROM INITIALIZATION. S4E1:120 63 94 137 JSR SEROUT
94E4120 50 94 138 JSR SERIN JWAIT FOR REPLY.
94174 24 TERMINAL ROUTINE. 94E71C9 06 139 NP #06 3IS IT *ACK® CODE?
- 9417:A9 00 25 TERM LDA #00 JCLEAR FLAG REGISTER. $4E9:D0 01 140 BNE ERROR INO, CHECKSUMS DID NOT MATCH.
9419185 OA 26 STA FLAG 94EB160 141 RTS
941B1A4 PF 27 LDY $FF JGET SLOT INDEX. 94ECIC6 OA 142 ERROR DEC FLAG 3SET THE ERROR FLAG.
941D:B9 B6 CO 28 LOOP LDA STATUS,Y JYES, 1S RECEIVER READY? 94EE:DO DE 143 BNE OUT
9420129 01 29 AND %01 94F01FO0 DC 144 BEQ OUT
9422:1F0 OC 30 BEQ TRANS INO, TRY THE TRANSMITTER.
_ 9424:B9 87 CO 31 LDA DATA,Y IYES, GET THE DATA. 94r2¢ 146)TRANSMIT FILE ROUTINE.
9427109 60 32 ORA #$80 ISET HIGH BIT. 94F2:AS F9 147 LDA ADDRLO }GET LOW BYTE OF FILE ADDRESS.
9429:C9 93 33 o £393 115 IT *CTRL S°? 94F4120 63 94 148 JSR SEROUT SEND IT.
942B1F0 20 34 BEQ SEND SBRANCH TO RECEIVE ROUTINE. 94F71AS FA 149 LDA ADDRHI)GET HIGH BYTE.
942D:20 FO PD 35 JSR COUT1 JOUTPUT THE CHARACTER. 94F9:20 63 94 150 JSR SEROUT $SEND IT.
94301AD 00 CO 36 TRANS LDA KYBD JREAD THE KEYBOARD. 94PCIAS FB 151 LDA LNGTLO)GET LOW BYTE OF FILE LENGTH.
9433110 E8 37 BPL LOOP $NO DATA, SO LOOP BACK. 94FE120 63 94 152 JSR SEROUT 3SEND IT.
— 9435148 38 PHA)SAVE THE CHARACTER. 95011AS FC 153 LDA LNGTHI JGET HIGH BYTE.
943618D 10 CO 39 STA STRB JCLEAR THE KEYBOARD STROBE. 950320 63 94 154 JSR SEROUT 3SEND IT.
9439120 FO FD 40 JSR COUT1 JREPLACE WITH THREE "NOP® 9506120 76 94 155 JSR ADD JFIND ENDING ADDRESS.
943Cs 4])INSTRUCTIONS IF OTHER TERMINAL ECHOES. 95091A0 00 156 LDY #u0
943CiB9 86 CO 42 PAUSE LDA STATUS,Y ;IS TRANSMITTER READY? 950B1A2 00 157 LDX #00
943F129 02 43 AND $02 sPAUSE UNTIL IT IS. 950D18E 36 05 158 BACKI STX SUMLO JCLEAR CHECKSUM.
94411F0 F9 44 BEQ PAUSE 951018E 35 05 159 STX Sl
_— 9443168 45 PLA JGET CHMARACTER FROM STACK. 95131B1 ¥9 160 MORE]l LDA {ADDRLO),Y)FETCH A BYTE.
9444199 B7 CO 46 STA DATA,Y JOUTPUT IT TO THE ACIA. 9515120 63 94 161 JSR SEROUT SEND IT.
94471C9 93 a7 oMP #3593 JWAS *"CTRL S® SENT? 9518118 162 cLe SCALCULATE CHECKSUM.
9449370 04 48 BEQ PAST 9519:6D 36 05 163 ADC SUMLO
344B1D0 DO 49 BNE LOOP }GO BACK FOR MORE. 951C18D 36 05 164 STA SUMLO
944D1C6 0A S0 SEND DEC FLAG $SFT FLAG. 9S1F1AS 00 165 LDA #00
944F160 51 PAST RS , 9521:6D 35 05 166 ADC SUMHI
~— 9524:8D 35 05 167 STA SuMil
95271E6 F9 168 INC ADDRLO jUPDATE ADDRESS.
94501 $3 JSERIAL INPUT ROUTINE 9529100 02 169 BNE BRNCH

9450:84 47 $4 SERIN STY $47 3SAVE Y HERE. .
945214 FF 55 LDY $FF $GET SLOT INDEX. continued on page 13

12 The Computer Hacker

BEGINNER’'S COLUMN

ANYONE FORA LITTLE KISS ELECTRONICS?

by Phil Wells—Technical Editor

I remember when Byte, Interface Age, Kilobaud and the
other “computer hobby” magazines started up, six or seven
years ago; they were filled with “how-to” hardware construc-
tion articles where engineers, techs and just plain hackers
shared their knowledge and experiences with us. What hap-
pened to those articles, those magazines? The micro hobby
turned into the small-business and home computer craze. A
world-wide gold mine was tapped as publishers realized
millions of people wanted to know what a micro was, how to
make a purchasing decision, what to use a micro for. The har-
dware hobbyist got lost in the rush. The money was to be
made selling new micro add-ons, writing hardware and sof-
tware reviews; the hardware hobbyist became a very poor
relation.

Every week I run into someone else who has been bitten by
the micro bug, learned how to run a micro, and now wants to
really get into the hardware, but is having trouble getting
started. “How do I go about learning just enough electronics
to get started modifying and building my own stuff?” they
ask. Not to become an engineer, just to be able to play with
add-ons, experiment with robotics, have some fun really doing
something.

Electronics for the professional is a large and complex sub-
ject. Does electronics for the hobbyist really have to be that
difficult? I don't think so. Digital electronics (the kind our
micros use) is much simpler than analog electronics. A hacker
doesn't have to “design for production”—that is, calculate
what might happen to every aspect of circuit performance as
all possible combinations of component tolerances interact in
a hundred thousand production models. All the hacker has to
do is get one sample to work acceptably in a particular ap-
plication.

How about electronics through the KISS (Keep it Simple,
Stupid) principle? Certainly, the deeper your understanding
of a technical subject, the better your chances of success in
designing your own hardware. But I've noticed a little under-
standing can get a hobbyist a long way, and more importantly,
that the hardest part is just getting started. So this column is
for the beginning hardware hacker who wants to start bur-
ning his fingers with a soldering iron without plowing
through textbooks or going to night school.

We'll always try to keep it simple, and we'll cover whatever
topics you write in and tell us you want covered. Everything
will presented hands-on fashion; not necessarily whole projec-
ts, but at least simple circuits you can put together to see the
concepts in action. If you don’t get in and mess around with it,
you're not going to learn it. To help locate tools, parts, etc. I'm
going to give Radio Shack part numbers, because the Shack is
simply the most commonly available get-it-now source.

Getting Started: Tools

Unless you like cutting and forming wire with your teeth,
you'll need some small hand tools. I like the smaller versions
(4-5 inch handles), since most micro-type projects involve very
small parts.

1) 4'2" diagonal sidecutters. Also the “flush-cut” style is
handy for printed circuit work.

2) 5" needle-nose pliers.

3) Wire strippers.

4) Set of small screwdrivers and a set of small nut drivers.

5) Small pencile-style soldering iron (45 watts is probably
too hot — get the 37Y: or 25 watt size — with a small chisel tip)
and rosin core solder (never use acid core solder].

6) Invest $12 to $19 in a “breadboard socket” such as Radio
Shack #276-174, I have a collection of these, each able to hold
about six 16 pin 1.C.'s, picked up at surplus stores at various
times over the years. This is absolutely the best way I've ever
found to try out a circuit idea, making many changes quickly
without soldering, before committing the design to a more
permanent construction method.

7) Clip leads. This is an 18" piece of the most flexible wire
you can find, terminated on both ends with an Alligator clip or
a spring action “mini test elip” (R.S. #270-372 or 270-370).
The Shack has a set of 10 really el-cheapo but usable light
weight leads for $3.69 (#278-1156). You'll need at least four
made with 16 gauge or heavier wire with large alligator clips
for connecting power supplies. A dozen of the smaller 22 or 24
gauge size with micro-clips is not too many.

8) Hook-up wire. You'll need 22 gauge (or there-abouts)
wire in various colors. Get used to using stranded wire for
projects designed to last a while—solid wire breaks with
flexing. You'll also need some insulated 22 gauge solid wire
for use as breadboard socket jumpers.

Getting Started: Parts

You'll need parts for any project you want to build. If you
live in an area with “surplus” stores, scrounge around there
for your parts. This magazine will regularly publish infor-
mation on how to mail-order parts. The most widely available
source of cheap (in both senses) parts is your local Radio
Shack store, so I'll always try to suggest Radio Shack parts
that have worked for me. But be forewarned, my experience
is that the Shack generally provides low quality at prices that
are usually higher than mail order prices. The most reliable
{and by far the fastest) source of mail order parts I've found is
Jameco Electronics, (415) 592-8097; call and ask for
their catalog.

Resistors. You'll need an assortment of 4 Watt resistors.
The Shack has a useful starter box of 350 for $9.95. Surplus

stores usually sell junked p.c. boards for a dollar or less; strip
the resistors, capacitors and transistors from these. For
higher wattages, see if your local TV repair shops will sell or
give you junked TV chassies. Strip these for parts.

Capacitors. You'll need an assortment of disc ceramics and
another of aluminum electrolytics. The Shack has $9.95 assor-
tments of these.

Transistors and IC's. Harnt the Shack's half-price table,
look for specials in magazine ads, but basically buy these as
you need them. You might try the Shack’s 2N3904 (NPN) and
2N3906 (PNP) sets of 15 for $1.98, but expect to find some that

‘don’t work. These are unlabeled, or are actually other

. near-equivalent types, and look like seconds or rejects; but
then, we're not designing for production, remember? The
Shack’s 2N2222 (15 for $1.98) type transistor works fine for
most low power needs.

Diodes. You'll need two kinds; small-signal silicon like
1N914’s, and silicon rectifiers like the 1N4002, The Shack has
ten 1N914/1N4148'’s for $0.99, and 1-Amp rectifier diodes (get
P/N 276-1102) at two for $0.59. You'll also need Zener diodes
and an occassional bridge rectifier, but unless you find a
bargain, get these as you need them. If you can pick up an
assortment of LED's (ight emitting diodes) at a good price
do it; they’re useful and fun to play with.

Getting Started: Test Equipment

 Electronic test equipment is a whole world in itself; you can

spend as much as your budget will allow. However, one item

is absolutely necessary and a few more will really enhance
your possibilities.

1) You'll need a meter to measure Volts, Ohms, and Amps.

It is possible to build your own from surplus parts, but not

‘worth the effort unless this is a major area of interest to you.

The Computer Hacker 18

You can get started with a simple analog “VOM"
(Volt-Ohm-Milliammeter) such as the Radio Shack #22-204 at
$39.95, but this type meter will not always give accurate
voltage readings with transistor and I.C. circuits. A better
investment is a “DVM" (Digital Volt Meter) such as the Radio
Shack #22-191 at $79.95. A 8Y: digit display is fine for our
purposes.

2) A logic probe is a very useful tool which is sometimes
easier to use than an oscilloscope and an awful lot less expen-
sive. This is a hand held probe with light emitting diodes to
indicate a logic “high,” “low” or “pulse” signal. Radic Shack
has a bare-bones model (#22-301) for $19.95.

8) An oscilliscope is a very worth while investment and is a
necessity for the really serious hacker. This tool is the only
way to really see what the fast changing voltages in your cir-
cuits are doing; it is a window into the world of the electrons.
Selecting a scope is not a simple task since prices range from
a few hundred to over eight thousand dollars. Get the best
you can afford, learn to use it, and you'll have acquired an in-
valuable “sixth sense.” For microcomputer work you need an
absolute minimum bandwith rating of 35 MHz, and preferably
at least 50 MHz. Two vertical channels are very much worth
having. Delayed sweep you can do without. A vertical sen-
sitivity of at least 10 mV is needed for analog work, but not
often for digital. The ability to invert one channel is necessary
if you want to do disk drive alignment. You also need an ex-
ternal trigger capability. Most important is a stable
zero-level, accurate and stable vertical sensitivity calibration,
and good, stable triggering. I've been disappointed in Heath
'scopes in this respect —the only really good triggering I've
seen is in Tektronix and Hewlett-Packard 'scopes. If you have
had good experiences with others, let me know. n

“

Telecomputing with the Apple I continued

952Bi1E6 FA 170 INC ADDRHI

952D3AS5 F9 171 BRNCH LDA ADDRLO JHRAVE ALL BYTES BEEN SENT?
952F1C5 FD 172 CMP ENDLO

9531100 OA 173 BNE HEREL

95331A5 FA 174 LDA ADDRHI

9535:C5 FE 175 CMP ENDHI

9537:D0 04 176 BNE HEREl

9539120 46 95 177 JSR SUMCHK JYES, SO SEND LAST CHECKSUN.
953C160 178 RET RTS ITHEN GO BACK TO BASIC.
953D1EB 179 HERE1 INX SHAS AN ENTIRE PAGE BEEN SENT?

9S3E4DO D3 180 BNE MOREl $NO, SO FINISH A PAGE.

9540120 46 95 181 JSR SUMCHK 1OTHERWISE COMPARE CHECKSUMS.

9543:18 182 e 1sFORCE A BRANCH BACK FOR
ANOTHER,

9544190 C7 183 BCC BACKI1

9546+ 185 ;SUMCHK SUBROUTINE.

9546120 50 94 186 SUMCHK JSR SERIN

9549:1A8 187 TAY

954A120 50 94 188 JSR SERIN IGET HIGH BYTE OF CHECKSUM.

954D1CD 35 05 189 CMP SUMHI 11S IT THE SAME HERE.

9550:D0 OD 190 BNE BAD INOC.

9852:CC 36 05 191 CPY suMLO 1DO LOW BYTES COMPARE? '

9555:D0 08 182 BNE BAD INO,

9557140 00 193 LDY $00 $CLEAR Y AGAIN,

9558149 06 194 LDA $06)SEND ®ACK"™ CODE.

955P:120 63 94 195 JSR SEROUT

955E160 196 RTS

9SSF1A9 15 197 BAD LDA #3515 $ISEND ®NAX*" CODE.

9561:20 63 94 198 JSR SEROUT

9564106 OA 19% DEC FLAG 3SET ERROR FLAG.

9566100 D4 200 BNE RET JBACK TO BASIC,

9568:F0 D2 201 BEQ RET 1GO GACK TO BASIC.

¢** SUCCESSFUL ASSEMBLY: NO ERRORS

Listing 3
ROUTINE TO CONVERT AN ASCII B-FILE TO A TEXT FILE.

10 CLEAR 3D$ = CHR$ (4): PRINT *INPUT THE FILE NAME."

20 INPUT F$: HOME : PRINT D$)"OPEN";F$1 PRINT D$;°READ";F$
30 ONERR GOTO 70

40 L = O1A = 4096:B$ = *=

50 GET B$s POKE (A ¢ L), ASC (B$)sL = L + 1

60 GOTO 50

70 PRINT D$;"CLOSE=;F$

80 F§$ = *B" + F$: PRINT F$,A,L

90 PRINT D$)"BSAVE*;F$;",A®;A1",L%)L

100 END

Listing 4
ROUTINE TO CONVERT A TEXT FILE TO A BINARY FILE.

10 CLEAR 1D$ = CHRS (4): PRINT "INPUT THE FILE NAME.®
20 INPUT F$: PRINT D$)"BLOAD")F$

30 A = PEEK (43634) ¢ 256 * PEEK (43635)
40 L = PEEK (43616) + 256 * PEEK (43617)
S50 F$ = *T* + F$: PRINT F$,A,L

60 PRINT D$;"OPEN");F$: PRINT D$);°DELETE";F$
70 PRINT D$;°OPEN®)F$: PRINT D$)*WRITE";FS$
80 FOR1I =0TOL -1

90 PRINT CHRS$ (PEEK (A + 1))

100 NEXT 1

110 PRINT D$;°CLOSE*)F$

120 PRINT * »
130 PORI =0 TOL - 1§

140 PRINT CHR$ (PEEK (A + 1))

150 NEXT I: END 8

14 The Computer Hacker

BUILD AN “EPRAM”

by Lance Rose—Technical Editor

Introduction
These days it seems that no computer system can get along
without at least some of its software in ROM. The smaller
“appliance” computers put the entire BASIC in ROM and
. more powerful disk-based systems usually have at least a
_ littie of it to hold a bootstrap loader that loads in the first part
of a disk operating system such as CP/M. Numerous
microprocessor-controlled dedicated controllers have their
operating programs burned into EPROMS or masked ROMS
as well.

With all the need for ROMs it stands to reason that the
complete hacker should have some way of programming at
least the most common of the currently used EPROMS, the
2716. The equipment usually required for this is (1) some sort
of hardware for actually programming a blank EPROM, and
(2) some device for erasing the EPROM and reprogramming it
when you find out the program didn't work quite right the
first ten times.

Anyone who had had much experience in developing some
ROM based software will probably attest to the fact that
although the method is OK, the time cycle for erasing and
reprogramming EPROMs leaves something to be desired.
With most of the UV lamps in the hands of today’s hackers, it
takes nearly an hour to erase an EPROM that has a program
~ bug in it so it can be reprogrammed with the (hopefully)
" correct version. What this means is that you must either keep
a number of these devices handy so that you can be
programming one while another is being erased, or simply
accept a turnaround time of about an hour for making each
change to the software. This becomes particularly annoying
when programming dedicated controllers as I can personally
attest to, not to mention the effect on the lifetime of your UV
lamp tube. What would be nice is to have some sort of
EPROM that could be both programmed and erased quickly
so that the development procedure could be speeded up. The
need for multiple devices would be eliminated if this were the
case also. Well, there is just such a device readily available
today. It is called RAM.

The RAM chip is ready made to be repeatedly and quickly
programmed and erased (written to and read from) and would
make an ideal substitute for the EPROM chip, at least as far
as the development stage of a project goes, if a couple of
minor problems could be overcome.

One problem is that in the past the pin compatibility
between the RAM and EPROM chips has been almost
nonexistent. Now, however there exist pin-compatible
substitutes for the commonly used 2716 type EPROMS.
These are the 2016 2k x 8 NMOS RAM and the 6116 family of
CMOS RAM chips in the same architectural size. These are
both 24-pin packages but we will be using the 6116 here due to

the low power requirements of CMOS logic.

The second problem is that when the 5-volt supply is turned
off, the information stored in a RAM is forgotten. The
solution to this is battery backup to preserve the memory. In
the case of CMOS, the current requirements are very low and
battery life should be quite long.

An additional requiremert for any EPROM substitute
should be that it ought to be able to be programmed in any
standard 2716 EPROM programmer without changes in the
programming hardware or software. The device presented
here fulfills these requirements and can be built for around
$10 to $12 worth of parts and a leisurely day's effort. Similar
devices are commercially available but fall in the $50 price
range, so this can be quite a bargain.

Figure 1

®
3

DIP
Socket 1c
1x 4011 IC
2

@PD/PGH

390 14
v 1N914 v
= P D)
i 1N914
E 4.5V
G O

{All other connections)

The Circuit
The EPROM substitute (nicknamed “EPRAM") is shown in

schematic diagram form in Figure 1. In order to match the:

RAM control signals to what most EPROM programmers put
out, it is necessary to include some additional logic. This is
supplied in the form of an additional CMOS IC, a 4011
quad NAND gate. This inverts some of the signals and
.prevents the RAM from being written into unless the 25
volt programming voltage is present. The program pulse is
converted into a negative going write pulse for the RAM. A
15 volt Zener diode reduces the level of the programming
voltage to a manageable level, at which point a resistive
divider takes over to present approximately 8.5 volts to the
input of the NAND gate. The battery backup supply is
isolated from the in-circuit power supply by a pair of small
diodes. This prevents the situation of the battery having to
attempt to power the whole circuit that the EPRAM is
plugged into when the power is turned off but the EPRAM is
not unplugged. This way the battery powers only the two
CMOS devices and keeps the current drain within reason. The
only penalty paid by the isolating diodes is to reduce the
power supply voltage to the RAM to 4.3 volts which is still
well within the specs of CMOS devices.

~ After programming, the EPRAM is removed from the
programmer and inserted into the dedicated controller,
computer logic board or whatever and it then begins to
function as any EPROM would. Without the programming
voltage it cannot be erased. The same control signals used to
select an EPROM are modified slightly to deal with the 6116's
very slightly different pin assignments for chip select
and output buffer enable.

The battery backup is provided by three ordinary 1.5 volt
AA penlight cells in a four cell holder with a wire jumper in
place of one of the cells. This is connected by a long, thin
flexible wire pair to the actual EPRAM unit.

Construction
The basis for the EPRAM is a 24-pin DIP header. This and
the 6116 itself form the actual physical base upon which all
the other components are mounted. A good way to start is to
attach the 4011 chip and the resistors and diodes to the top of

The Computer Hacker 15

the 6116 using super glue or epoxy (see Figure 2 for the
layout). Allow plenty of time for the adhesive to dry as the
bending of leads and soldering put some strain on the bond.
Overnight doesn't hurt. Then, using a combination of the
actual component leads and short pieces of wire-wrap wire,
bend the leads and pins and carefully solder everything
together. It will be necessary to bend pins 18, 20, 21 and 24 of
the 6116 upwards to facilitate making connections to them.
Next, place the 6116 unit on top of the DIP header and solder
the remaining 20 pins of the 6116 to the corresponding pins of
the header. The header can be stuck into some conductive
foam while you are doing this. It may be helpful to mention
that there are several manufacturers of DIP headers around
and their products differ slightly in the dimensions of the
protruding pins. I have found that a header with long, thin
pins is easier to insert and withdraw from a socket than the
one with the shorter, wider pins, so you might want to search
for one of the better ones.

At this point I should mention something about CMOS and
static. Due to the nature of the construction here, it is difficult
to prevent leaving the pins of the 4011 dangling out in space
while you are soldering to them. My experience with CMOS
here is that if you are reasonably careful (i.e. don't work on a
high-static carpet or wear nylon clothing), you can work with
unprotected CMOS and not damage it. Take reasonable care
but don’t get paranoid about it. An alternative would be to
solder in a 14-pin DIP socket and insert the chip later but this
causes an already-tall package to grow taller yet. Your
decision here will show whether you're a conservative or
a swinger.

Once the 6116 is soldered to the header you can make the
last few connections from the 24-pin header to the 4011. To
connect the assembly to the backup battery, I used a twisted
pair of wire-wrap wires, one blue and one red. A refinement to
this would be to use a small watch or hearing-aid type battery
and mount it on the assembly itself. This would eliminate the
need for the external battery unit. My goal here was to design
this so that it used the most common electronic components
possible, components that would be easily available to any
hacker within reach of a Radio Shack store.

Figure 2a:The assembled EPRAM with battery holder.
Note the jumper wire in place of the fourth battery.

Figure 2b: Enlarged view of the EPRAM.

16 The Computer Hacker

Checkout

Checking the EPRAM out is really pretty simple. Just plug
it into your EPROM programmer and attempt to program
something into it. If your programmer provides the supply
voltage (I would assume most do, although if it is hacker-built
I wouldn't dare make any definite statements), you can skip
attaching the battery at this stage. If the EPRAM can be
verified after programming you have wired it correctly. If
not, examine carefully all the solder connections in the
assembly. In order to keep the size small, there are a lot of
connections crammed into a small space. Look for solder
bridges or shorts. Also make sure all the diodes involved have
the correct polarity. If you have a logic probe or a scope, look
at the programming signals at the 6116 to see whether they
look correct. This is the best way to detect faulty logic. If all
else fails it is possible that one of the CMOS chips is bad or
has been ruined in assembly. (I don't need to caution you to
use 2 very small soldering iron, do I?) This is one place where
sockets come in handy. My first prototype of this used sockets
for both chips but the thing ended up so bulky that I waived
my normal rule to always use sockets and soldered it together
directly. As I stated above, CMOS isn’t the bugaboo it once
was thanks to diode protection of inputs. Just be careful, try
to check out the 6116 and 4011 in another circuit if you can
before assembly, and everything should turn out fine.

If all is well and the EPRAM is programmable, the next
thing to do is hook up the battery. Remove the EPRAM from
the programmer, wait 8 minute or so and re-insert it. Now
verify it again. If the information content hasn't changed,
you're ready to start using it. If it doesn’t check out, go back
and re-examine all connections. Since there are a lot of
different EPROM programmers around, it is always possible
(but unlikely, I think) that your particular programmer is in
some way incompatible with this device. As a hacker I'm afraid
it will fall to you to ferret out this type of problem. My own
experience with a cheapie, home-built PROM burner is that
both units I built worked the first time and have worked
every time since. I can replace my boot ROM with this
EPRAM and have the computer boot up every time. The

EPRAM assembly can even be kept in a piece of conductive
foam and not lose its information since “conductive” foam has
aresistance in the neighborhood of K-ohms.

Using It

The place I envision this device coming in the most handy is
in developing software for ROM-based computers or
dedicated controllers. You can program your software into
this device, try it out immediately, and if it doesn’t work the
first time (who ever heard of such a thing), you can make
immediate changes to the software and reprogram the
EPRAM without bothering to erase it. I think this can be of
great help in the software development process. For those of
you who have disk-based systems and like to fool around with
different boot loaders, you can do it and get instant feedback
for the next round of code. Once you have your program the
way you want it, you can burn a conventional 2716 to use on a
long-term basis.

If you have a commercial EPROM programmer with fixed
programming parameters, there will be no problem although
you will probably have to wait the full EPROM programming
time, something like 100 seconds for a full 2K bytes of code in
2 2716. On the other hand, if you're using a homebrew piece of
hardware and some software to go with it, you can reduce the
timing parameters that control the writing delay for each-
address location. The 6116 needs no special delay in the write
cycle as a true 2716 does. This allows programming the entire
device in a fraction of a second. A couple of minutes may not
sound like a lot of time, but when you're twiddling your
thumbs waiting for something to finish, it can seem like a lot
longer.

I think it's only fair to say that eventually the EEPROM
(Electrically Erasable PROM) will probably provide a way to
accomplish what we're doing here. However at the present
time, these devices are pretty expensive and require
somewhat different programming waveforms than the
ordinary UV-erasable EPROMS. The EPRAM should be
completely compatible with the latter device and I think you
will find it very handy as a development tool. a

TR e TR Ty g St

RS i R LSRR V- SS g o SN SN

This space is for you. We encourage you to communicate with other readers through this column by asking for their help with
your problems, and by writing in with your solutions to questions like “Where can I...7" or “How can I..7" As a forum for sharing
hands-on experience, this section can be an important resource for you. We will try to keep the lead time short for a rapid
exchange of information. Let us hear from you!

